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Continuing a previous study, we calculate the cutoff parameters for a class of channel
models exhibiting burst noise behavior and evaluate the performance of interleaved
coding strategies. We conclude that, provided the channel memory is large enough and is
properly exploited, interleaved coding is nearly optimal.

I. Introduction

In Ref. 1 we introduced a general class of discrete channels,
which we called RFI channels. These channels, which were
motivated by an earlier study (Ref. 2) of pulse-position modu-
lation in optical channels, exhibit a simplified kind of burst-
noise behavior, and in Ref.3 we calculated their channel
capacities. In this paper, after reviewing our previous results in
Section II, we continue our analysis of RFI channels, as fol-
lows. In Section III we give formulas for R, the cutoff param-
eter for these channels. This parameter is considered by many
engineers to be a more meaningful measure of the channel’s
quality than capacity, and its behavior on RFI channels is
quite interesting. In Section IV we begin to deal with the
practical problems of coding for RFI channels by considering
the merits of interleaved codes. In Section V we give a

numerical calculation to illustrate our results and state our.

conclusions.

Il. Review of Previous Results

We start with a set {§,$,,...,{}of K discrete memory-
less channels, each with the same input alphabet 4, and output
alphabet B, and a probability vector &= (o, a,,..., tg),
with K nonzero components. For each positive integer b, we
define two mixture channels {(b) and T(b), as follows. When a

sequence of letters from A is to be sent over {(b), each block
of b consecutive letters (such blocks we call packets) is trans-
mitted over one of the auxiliary channels {, . Which channel is
selected to transmit a given packet is determined by an exter-
nal random variable Z, which is described statistically by
Pr{Z =k} = a;. Informally we think of Z as determining the
noise level and b (the burst length) as the length of time that a
given noise level persists. Formally, the channel {(») can be
viewed as an orthodox discrete memoryless channel (DMC)
with input alphabet 42, output alphabet B?, and transition
probabilities

K b
PO = 3 Hpk(yilxi)
i=1

k=1

where y = (v, Y9, -+ ¥p)s X = (X1, %y, ..., X,), and p, (v 1x)
denotes the transition probability function of the channel ¢, .

The second RFI channel {(b), which might be called the
channel with side information, is identical to {(&) except that
the channel provides to the user along with every packet the
index of the channel used to transmit that packet. Informally,
this side information can be thought as being provided by a .
noise level detector, perhaps an automatic gain control device.
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Formally T(b) is a DMC with input alphabet A%, output
alphabet B? X {1,2,...,K}, and transition probabilities

b
O‘k H pk(yilxi) .
i=1

Let us denote the capacities of {(b) and T(b) by C(b) and
C(b), respectively. The main results of Ref. 1 can be sum-
marized as follows. First, C(p) is independent of b, and under
a mild additional hypothesis* we have the formula

P, klx) =

where C). denotes the capacity of . Second, C(b) is less than
C(b), in general strictly less, and in fact

It follows in particular that lim C(b) =C.
b—roo

lll. The Calculation of R

For a general DMC, the calculation of R, depends on the
functionj(x, ,x,), defined for pairs of input letters:

> pGlx ) prix ).

yeB

If then X is any random variable taking values in the input
alphabet 4 we define J(X) = E[j(X,, X,)], where X and X,
are independent random variables with the same d1str1but10n
as X, Finally,

R, = max {-logJ(X)}.
x

We now consider the channel (1), which is the easiest case.
Here the output alphabetis B X {1,2,...,K}. Let us denote
the function j for this channel by 7, and the corresponding
functions for the auxiliary channels {{,} by {/,}.

*This hypothesis is that the same input distribution can be used to
achieve channel capacity on each of the auxiliary channels. Through-
out the paper we will describe this state of affairs by saying the
channels {§;} are compatible. )
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Lemma l:
TENEN E Wi (x5 %,)
Proof:
oy, x,) = 3, B, klx, )P By, kix, )2

y’k

= > > [ow,0lx 1Y [0, p,(1x,)] 2
y k

~™

@, 3 P 0Ix ) p (lx,)
y

; a7y Gy %)

QED.
Corollary 1:

R

0
1032 Z ak2 ?
k

R ()<~

and equality holds if the auxiliary channels are compatible.

Proof: Let X achieve Ry(1). Then

-R. (1 —
2 0()=J(X)

by Lemma 1

Z a,J, (X)

R

>3, o2 °

On the other hand, if the channels are compatible, and if X
simultaneously achieves R, for each of the auxiliary channels,
we have

NG

JX) = Zak2 0
k




and so

_ -r®
R (1) >~ log, Zock 20 aswell
% QED.

Corollary 2:

_ 1 X -brM
Ry(b)<- 4 log, Z a2 °,
k=1

with equality if the channels are compatible.

Proof: An examination of the proof of Lemma 1 shows that if
we denote the j-function for {(b) by 7, we have

7O @,,x) = 2 o iP5,
k

here j(”) denotes the j-function for b parallel copies of {,.
Arguing as in the proof of Corollary 1, we get the desired
inequality. It is possible to show (see Ref.3, p.150,
Eq. 5.6.59) that R, for b parallel copies of {; is exactly b
times the R, for {;, and is achieved by an input [0, CTP. YN
X,,) of independent input random variables, each distributed
according to the input that achieves Rg‘). Thus if the channels
are compatible and we choose X = (X;, X,, ..., X,), we get

) -bRg"
@ = Y w2
and so (remembering to divide by 5),

5RO

= 1
Ro(b)>—7log2§:ak2 o,
k

which combined with the opposite inequality (which is true in
general) yields the desired result.
QED.

Corollary 3:

Let

RO = min (RED : k= 1,2,...,K}.
k

Then

. 53 ( 1
lim R (b) <R{mn) |

b—roo

with equality if the channels are compatible.

Proof: This follows immediately from Corollary 2, since the
probabilities . are all nonzero by assumption.

We close this section with several elementary remarks about
R, (b). We have no simple formula analogous to that of Corol-
lary 2 for Ry(b), but in any given case it is not difficult to
compute since, as remarked in Section II, T(b) can be viewed
as a DMC with alphabets 4%, B?. If R indeed measures the
channel’s quality, the side information present in {(b) should
not decrease R, and indeed we can prove Ry(b) < Fo(b).

This result follows from Lemma?2, which relates the
j-functions for {() and {(b).
Lemma 2:
]_(b) (xl’x2) <](b) (xl ’xz) .
Proof:

7O (x,,x,) = @, klx )2 By, klx,)'?

™

ES

S loy s, @Ix DIV ¢ [op, lx )
y ok

A

12
zy:[; P, lx,) Zl: a]‘pj(zl_}fz)]

(by Schwarz inequality)

Z pQylx )2 lefz)m =7 x,x,)

y
QED.
Corrollary 4: Ry(b) = R (b).
Proof: Let X achieve R y(b). Then
~R_(b) - -R (b
2 0T =X =IX)=2 o®
QED.
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Corllary 5: IfR émi") =0, then

lim R () = lim R (») = 0.
broo b—roo

Proof: This follows from Corollary 3 and 4.

When R(()’""”) > 0, the limits of Corollary 5 are at present
unknown to us. Even if the auxiliary channels are compatible,
the limit of R (b) is as yet unknown, although we conjecture
that the two limits are always the same.

IV. A Study of Interleaving

The values of C and R, for our channel models only
indicate possible ranges of rates for reliable communication.
To design a practical system for these channels requires a
study of coding. If we choose to view $(b) or t(b) as DMCs,
the coding alphabet A2 is exponentially large and the pros-
pects of devising practical codes using such a large alphabet are
rather poor. On the other hand, motivated by practical experi-
ence with real bursty channels, we might try to communicate
over ¢(b) or {(b) by interleaving codes over the basic alphabet
A. Of course if this is done, the channels we are really coding
for are ¢(1) and {(1), respectively. Now one normally expects
such interleaving to decrease channel capacity, and in Ref. 1
we showed that indeed {(b) is an increasing function of b.
However, we also showed there that T(b) = ¢(1) for all b, so
that in the presence of side information apparently no penalty
is paid if interleaving is employed. Given the results of Sec-
tion III, we can now easily describe what happens to R, when
interleaving is used.

Let us assume for purposes of discussion that the K auxil-
jary channels are compatible. In that case, according to Corol-
lary 2 in Section III, the value of R for the channel t(b) is
given by

K

B =L

Ro(b) =3 log, Z a, 2
k=1

g

From this it follows that R (b) is a decreasing function of b. If
we further assume that R{™") = 0, we have the expression

R, ~%,

where K = -log,(a,), k being the index of the auxiliary chan-
nel with R, =0. Since we already know that under these
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assumptions the capacity of ¢(b) is a constant independent of
b, we have the peculiar situation that

) _
]élliano(b) -

We say peculiar because, as we mentioned in the introduction,
both C and R, are believed to be measures of the channel’s
quality, and yet as the burst length & of our RFI channels
increases, these measures diverge. For the channels {(b) with-
out side information, the situation is if anything even more
puzzling. We omit the details, but what happens in general is
that C(b) is a strictly increasing function of b, while R,(b) is a
strictly decreasing function of b. We will comment on this
apparent paradox in Section V.

Before leaving the subject of interleaving, however, we
would like to describe a modification which can be used on
the channel ¢(b), and which for large values of b makes this
channel almost as good as {(b). The idea, which we first
suggested in Ref. 1, is to attach to each transmitted packet a
fixed “test pattern,” and on the basis of the received version
of the test pattern to make a statistical decision about which
of the K auxiliary channels was used to transmit the packet. If,
say, the test pattern is of length log b, then for large values of
b one would expect this “noise estimate” to be increasingly
reliable, and yet the fraction of the transmitted letters devoted
to the test pattern is quite small. What this means is that for
large b the channel ¢(b) behaves as if the side information were
available, and so interleaving should not cause a severe degra-
dation in performance. In the next section we will illustrate
this point with a specific numerical example.

V. A Numerical Example and Some
Conclusions

We shall now illustrate our results with a specific example,
the same example introduced in Ref. 1, which is indeed the
“RFI channel” associated with pulse-position modulation in
optical channels (Ref. 2). Here K = 2; the auxiliary channel ¢,
is a noiseless binary symmetric channel, and ¢, is a “useless”
BSC with transition probability 1/2.

1/2
0e ) ®0 O ® 0
1/2
1/2
1/2
1@ —®1 1@ ® 1
CHANNEL ¢, CHANNEL ¢,

Let us assume that a; =1 - €, &, = € are the probabilities that
the “channel selector” chooses §; and {,, respectively. We




present below a table of the various values of R and C for
€e=0landb=2" m=0,1,2,...,10. We now present some
notes on the calculations:

1. Ry(b), C(b): For purposes of computation the channel
{(b) can be viewed as a DMC with input and output alphabets
both equal to the set of binary b-tuples. The transition proba-
bilities are

pOlx) =(1-e)+27% y =«x
=27b¢ yEX.

From this it follows that the j-function for {(b) is

b_ 2
Jey,%,) = ¢ 2b 2 € ?{e [e+ 201~ e)]}1/2x1 #X,

=1 x, =X

1 2°

Since §(b) is symmetric, R, is achieved for equiprobable
inputs, and indeed

1
where

20 -1
2b

Jy =

T+ i , Where
2b

J is the value of j(x,, x,) for unequal x’s given above. We
computed C(p) in Ref. 3; we repeat the formula here:

1 -
CE) = (1- &)~ 5 [Hy(e,) + e, log, (1-27],
where €, = (1~ 27)e, and H, is the binary entropy function.
2. Ry(d), C(b): Since both channels {;, and {, are sym-
metric, both R, and C are achieved by equiprobable inputs,
and the channels are compatible in the sense of this paper.

Since R{! =1, R{?) =0, we have by Corollary 2 of Sec-
tion III,

= 1 -
Ro-(b) = —'Zlog2 [(1-e)2b+¢].
Of course from our previous paper

Qb)) = 1-eforallb.

3. ko(b), 5(b): This is a new notation and it refers to the
channel t(b) when a specific kind of “smart” interleaving of

the general kind described in Section IV is implemented. Here
we use an all-zeros test pattern of length ¢ in each transmitted
packet. If the received test pattern is not all zeros, the entire
packet is erased; if it is all zeros, the packet is accepted. What
this means is that after interleaving the channel {(5) becomes a
binary symmetric erasures-and-errors channel with erasure
probability p = (27 - 1)/2* and error probability g = € 2-¢+1),
The R, for this channel is given by

Ryp,q) = 1-log, [1+p+2+/(A-p-q)q] ,

and so the R for the channel {(b) when depth b - ¢ interleav-
ing is employed together with this “noise detection” proce-
dure is given by

[~ t
R,(b) = max (1 ~—b—)R0(p,q).
0<r<h

The maximization is over all possible test pattern lengths, and -
the factor (1 - ¢/b) reflects the rate loss due to the presence of
the test pattern. S

Similarly the capacity of the above erasures-and-errors
channel is given by

2
Clp,q) = (1-p)log, -7

1 1
-(1-p-q)log, T-p-4 - qlog, -

and so

C(») = max (1 —%) Clp,q).
¢

We now present our table, with € = 0.1.

~

b R, Ry Ro[topt]

0.47805 0.86250
047783 0.81074
0.45193 0.66952
0.35444 0.40901
16 0.20552 0.20761
32 0.10381 0.10381
64 0.05191 0.05191
128 0.02595 0.02595
256 0.01298 0.01298
512 0.00649 0.00649
1024 0.00324 0.00324

0.71360 0.9000
0.74841 0.9000
0.79622 0.9000
0.84199 0.9000
0.87069 0.9000
0.88534 0.9000
0.89267 0.9000
0.89634 0.9000
0.89817 0.9000
0.89908 0.9000
0.89954 0.9000

0.4871 {0]
0.4781 [0]
0.4781 [0]
0.4923 [1]
0.5622 [3]
0.6506 [5]

0.7136 {0]
0.7136 [0]
0.7136 [0]
0.7136 [0]
0.7343 [1]
0.7781 [3]
0.7260 [7] 0.8214 [4]
0.7794 [9] 0.8519 [5]
0.8138 [12] 0.8716 [6]
0.8347 [14] 0.8837 [8]
0.8469 [16] 0.8909 [9]

co H N =
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The numbers R, R,, C, C behave as expected, but the
behavior of RO, C is rather interesting. For small values of b
(up to about b = 8), the optimal test pattern length is seen to
be t=0; i.e., no test pattern should be used. However, for
larger b’s the test pattern does help, and indeed as b — o0 Ro
appears to be, and indeed is, approaching the capacity 0.900
of {(b). If R, is in some sense a practical measure of the
channel’s quality, this indicates that for large b, the “smart”
interleaving idea makes {(») a very tractable channel for
coding.

To further illustrate our ideas, we next present a table for
b =128, ¢=0.1 giving the values of Ry and C for 5 different
combinations of side information and interleaving.

Option R o C
No side information, no interleaving 0.02595 0.89634
No side information, “dumb” interleaving 0.47805 0.71360
No side information, “smart™ interleaving 0.7794 0.8519
Side information, no interleaving 0.02595 0.9000
Side information, interleaving 0.86250 0.9000

At first we found the fact that interleaving could increase
Ry, and increase it dramatically, very puzzling. But if we take
the view that R, is an inverse measure of the delay, rather
than the complexity, required to achieve a given performance,
the data become comprehensible. Suppose, for example, one
can achieve a given bit error probability and rate with delay D
on the channel £(1). Then exactly the same performance can

be achieved on $(b), with delay D - b, by interleaving b copies
of the code used on {(1). Thus we would predict R, (b) > 1/b
R o(1), and indeed the data in the above table satisfy this
inequality. Indeed, since as we showed above

R0y~ 89
we have
RyD)
Ro(b) fle)+b
where
2
log
f(e) = —(“—6)
log (671)

and 0 < f(e)<1/2. Similar but computationally messier
results for {(b) confirm these observations.

On the basis of this numerical example and several others,
we tender the following conclusion. On a general RFT channel,
i.e., one that exhibits long periodic bursts of poor data quality,
the best coding strategy is probably a “smart” interleaving
strategy. By this we mean a strategy that uses the received data
to estimate the noise severity, and passes along these estimates
to the parallel decoders. In a later paper we hope to verify this
conjecture by considering the performance of specific coding
schemes on specific RFI channels.
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